PHILIPS sense and simplicity

LED Lighting Scenario in India

Nirupam Sahay Philips Lighting On behalf of ELCOMA

LEDs Are the Lighting Source for Tomorrow

Conventional Lighting Sources

Incandescent

Fluorescent

 Gas-discharge (example: neon)

LED Lighting Sources

Benefits of LED Lighting

- Ultra long source life
- Low power consumption
- Low maintenance
- No moving parts
- No UV radiation
- Cool beam of light
- Digitally controllable
- Sustainability

The future is brighter than ever

Unleashing new possibilities with LED

New innovations are radically transforming the way we consume energy

The LED revolution

Digital lighting is transforming the entire landscape*

*Source: Philips Lighting global market study 2009, updated for 2010

LEDs are reshaping the lighting industry

traditional lighting

- technical life < economic life
- limited number of options
- standardized products
- economies of scale
- traditional market channels
- limited number of light points

LED lighting

- economic life < technical life
- → infinite number of options
- customized products
 - economies of scope
 - completely new channels
 - huge number of light points

Evolution of White LEDs - efficiency

Haitz Law - LED Performance, Im/\$

Life Cycle Analysis of 3 competing technologies

	ndescent	CF	LED
	Incal	rornado	JuraLED Warm White
Technology	Incandescent	Compact Fluorescent	LUXEON rebel LED
Other commercial Names			Master LEDbulb MV (220V)
Wattage [W]	60	14	12
Lumen [lm]	890	800	806
Efficacy [Im/W]	14,8	57,1	67,16
lamp [gram]	24,3	95,0	179,0
box [gram]	14,5	15,8	46,0
Lifetime [hr]	1 000	8 000	25 000

Life Cycle Analysis of 3 competing technologies

Comparison basis Number of lamps needed for 25k hr of usage

EnduraLED 12W (25k hr)

Tornado T2 14W (8k hr)

Life Cycle Analysis of 3 competing technologies

LED is best option on environment

User phase is the dominant characteristic

• EI = Eco Indicator

• mPt = millipoint, a relative holistic indicator for environmental impact / consumption (an average European uses 1000 mPt per year)

Indian LED Lighting Market 2010-2015 (estimate)

- Estimated at USD 73.3 Million in 2010
- Expected to reach USD 470 Million by 2015
- Street Lighting to account for approximately 60% of the LED market in 2015
- Higher acceptability by the Government and energy efficiency will be a crucial success factor for quick adoption

Indian LED Lighting market estimated to grow at >40% till 2015!

Growth Drivers

- Investment by the government in energy efficient lighting systems
- Decline in the average prices of LEDs
- Quick Rol to drive adoption
- Improvement in technology addressing new applications
- Global mandate to arrest global warming and migration to technologies like LED

Energy efficiency is the top driver

- Lighting consumes 17% of the total energy
- More than 80% of current lighting used is based upon antiquated technology
- Use of more efficient LED technology will not only save energy but also lead to reduction in the emission of greenhouse gases

Lumen/pack and lumen/rupee driving penetration

- Lumen/pack has doubled consistently every 18 months for the last 30 years
- As lumen/pack increases, more and more applications become meaningful
- Overall LED penetration in India is low but gaining momentum rapidly in certain applications eg. down lighting, accent lighting and to a certain extent in low wattage street lighting

Government encouraging energy efficient procurement - a key driver of LED penetration

- Pilot projects started in some states
- Some tenders for low wattage street LED street lighting awarded
- Lack of proper standards can lead to concerns about reliability
- Standardization activity already started at BIS
- BEE guidelines in circulation

Meaningful LED solutions for Home Lighting

- LED lamp designed and manufactured in India launched in 25, 40 & 60 watt equivalents
- LED Home Decorative Lighting range launched

Meaningful LED solutions in Office & Retail Lighting

- Remote phosphor LED down lights which offer 50% energy saving when compared with CFL down lights
- LED accent lighting solutions which offer 80% energy saving when compared to halogen spotlights
- Light quality comparable and attractive TCO
- · Good momentum seen in offices, retail and hospitality

Meaningful LED solutions in Outdoor Lighting

- Low wattage street lighting LED solutions designed and developed in India launched for A2, B1 and B2 category roads
- Some momentum already seen though many customers are still tentative when committing
- Inability to differentiate between good and bad solutions is the major deterrent. Availability of standards is key
- High wattage street lighting LED solutions available in global ranges ... however need higher customer commitment before taking a decision on localization
- LED city beautification range

Meaningful LED SOLAR street lighting solutions

- Locally designed and developed solutions for off-grid and on-grid applications launched
- Solution specifically developed for MNRE specifications also launched
- Key applications in rural as well as secondary urban roads, industrial complexes and townships

ELCOMA – Spreading LED Awareness

- Workshops / Seminars
- Conclaves/Exhibitions
 - May 2010 in Delhi
 - April 2011 in Hyderabad
 - Jan 2012 in Mumbai
- Publication of LED Street lighting guide for Municipalities and Public Works Departments
- Articles and advertisements in special magazines
- Media publicity

Support required from the Government

- Implement recommendations of "The Economic Case to stimulate LED Lighting in India" white paper issued by the Ministry of Power
- Drive standards
- Create environment for manufacturers to invest in production of LED chips in India:
 - Offer land at subsidized rates; government funding participation; soft loans; tax holidays
- Bring in notifications:
 - All showrooms or show windows using Incandescent Lamp or halogen lamps to replace them with LED down lighters
 - Mandatory use of LED streetlights for secondary roads, parks and parking areas etc.
- Government bulk procurement
 - Preparing bulk requirement of Railways, Airport authority, Urban Housing, Highways & other large development projects to create a large demand to encourage the industry to expand
- Test Labs
 - Government subsidizing establishment of LED test facilities at existing Test Lab (~ Rs. 25 Crores)
 - Need higher investment for many more Test Labs

